avatar

Antoine de Mathelin

Ph.D. Student
Centre Borelli, ENS Paris-Saclay
antoine.de_mathelin (at) ens-paris-saclay.fr


Short Bio

I am a last year Ph.D. student at the Centre Borelli of the ENS Paris-Saclay in France. My thesis is sponsored by the Michelin tire company and conducted under the supervison of Pr. Mathilde Mougeot, Pr. Nicolas Vayatis and François Deheeger.

My research focuses on developing reliable machine learning models under the intrinsic constraints of engineering design, such as domain shift and costly labeling. I am particularly interested in transfer learning, domain adaptation, active learning, uncertainty quantification, and out-of-distribution detection.

Publications [Google Scholar]

  1. ICTAI
    Garin, M.*, de Mathelin, A.*, Mougeot, M. and Vayatis, N.
    (* Equal contribution)
    IEEE 35th International Conference on Tools with Artificial Intelligence (ICTAI), 2023.

  2. FTL
    de Mathelin, A., Deheeger, F., Mougeot, M. and Vayatis, N.
    Federated and Transfer Learning (FTL), 2022.

  3. ECML-PKDD
    de Mathelin, A., Deheeger, F., Mougeot, M. and Vayatis, N.
    European Conference on Machine Learning and Knowledge Discovery in Databases (ECML-PKDD), 2022.

  4. ICLR
    de Mathelin, A., Deheeger, F., Mougeot, M. and Vayatis, N.
    International Conference on Learning Representations (ICLR), 2022.

  5. AI2ASE
    Gilda, S.*, de Mathelin, A.*, Bellstedt, S. and Richard, G.
    (* Equal contribution)
    3rd Annual AAAI Workshop on AI to Accelerate Science and Engineering (AAAI-AI2ASE), 2022.

  6. DistShift
    de Mathelin, A., Deheeger, F., Mougeot, M. and Vayatis, N.
    NeurIPS Workshop on Distribution Shifts, Connecting Methods and Applications (NeurIPS-DistShift), 2021.

  7. DGM
    Oubari, F., de Mathelin, A., Décatoire, R. and Mougeot, M.
    NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications (NeurIPS-DGM), 2021.

  8. ICTAI
    de Mathelin, A., Richard, G., Deheeger, F., Mougeot, M. and Vayatis, N.
    IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), 2021.

  9. ECML-PKDD
    Richard, G., de Mathelin, A., Hébrail, G., Mougeot, M. and Vayatis, N.
    European Conference in Machine Learning and Knowledge Discovery in Databases (ECML-PKDD), 2020.

Softwares

  1. de Mathelin, A., Atiq, M., Richard, G., de la Concha, A., Yachouti, M., Deheeger, F., Mougeot, M. and Vayatis, N. (2021)
    ADAPT is an open source library providing numerous tools to perform Transfer Learning and Domain Adaptation. The library is specifically designed for Scikit-learn and Tensorflow users with a "user-friendly" approach.
    GitHub stars GitHub forks GitHub contributors Programming language PyPI version PyPI downloads

  2. Gnassounou T., Kachaiev O., Flamary R., Collas A., Lalou Y., de Mathelin A., Gramfort A., Bueno R., Michel F., Mellot A., Loison V., Odonnat A., Moreau T. (2024).
    SKADA is a library for domain adaptation (DA) with a scikit-learn and PyTorch/skorch compatible API.
    GitHub stars GitHub forks GitHub contributors Programming language PyPI version PyPI downloads

  3. Lalou, Y., Gnassounou, T., Collas, A., de Mathelin, A., Kachaiev, O., Odonnat, A., Gramfort, A., Moreau, T. and Flamary, R. (2024).
    SKADA Bench proposes a framework to evaluate DA methods based on a fair evaluation of existing shallow algorithms, including reweighting, mapping, and subspace alignment. Realistic hyperparameter selection is performed with nested crossvalidation and various unsupervised model selection scores.
    GitHub stars GitHub forks GitHub contributors Programming language

Invited Talks

Services

Conference Reviewers

Journal Reviewers